B.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - NOVEMBER 2013
ST 3506 - MATRIX AND LINEAR ALGEBRA

Date: 08/11/2013
Time : 9:00-12:00
Dept. No. \square Max. : 100 Marks

PART - A

Answer the following questions:

1. Define Skew-Symmetric matrix. Give an example.
2. Define trace of a square matrix.
3. Define singular and non-singular matrices.
4. Find the determinant $\left|\begin{array}{cc}1 & \log _{y} x \\ \log _{x} y & 1\end{array}\right|$.
5. When do we say that the vectors $\mathrm{X}_{1}, \mathrm{X}_{2} \ldots, \mathrm{X}_{\mathrm{r}}$ are linearly dependent?
6. Explain linear homogeneous equations.
7. State any two properties of rank of a matrix.
8. Define 'Basis' of a vector space.
9. Define Characteristics roots of a matrix.
10. Determine the characteristic roots of the matrix $M=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$.

$\underline{\text { PART - B }}$

Answer any FIVE questions:
11. If A and B commute, show that for every positive integer ' n ',

$$
(\mathrm{A}+\mathrm{B})^{\mathrm{n}}=\sum_{r=0}^{n}{ }^{n} C_{r} A^{r} B^{n-r} .
$$

12. Evaluate the determinant, and find its value when $a+b+c=0$.

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{3} & b^{3} & c^{3}
\end{array}\right|
$$

13. Show that the inverse of a symmetric matrix is symmetric.
14. Find the inverse of the matrix.
$\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$
15. State and prove the necessary and sufficient condition for consistency of a system of linear equations.
16. Examine the consistency and solve

$$
\begin{aligned}
& x+2 y-z=3 \\
& 3 x+y+2 z=1 \\
& 2 x-2 y+3 z=2
\end{aligned}
$$

17. Apply Laplace expansion using minors of the first two rows to find the determinant
$\left|\begin{array}{llll}3 & 2 & 4 & 0 \\ 1 & 4 & 2 & 3 \\ 4 & 3 & 1 & 0 \\ 2 & 1 & 3 & 4\end{array}\right|$.
18. State and prove Cayley-Hamilton Theorem.

PART - C

Answer any TWO questions:

19. (a) Show that every square matrix with complex elements can be expressed uniquely as the sum of a Hermitian and a Skew- Hermitian Matrix.
(b) Solve for x

$$
\left|\begin{array}{ccc}
3 x-8 & 3 & 3 \\
3 & 3 x-8 & 3 \\
3 & 3 & 3 x-8
\end{array}\right|=0 .
$$

20. (a) Prove that

$$
\left|\begin{array}{lll}
a & b+c & a^{2} \\
b & c+a & b^{2} \\
c & a+b & c^{2}
\end{array}\right|=-(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a}) .
$$

(b) Find the inverse of A by step-by-step reduction of [A I] where

$$
A=\left[\begin{array}{rrr}
2 & 3 & -1 \\
0 & 1 & -1 \\
2 & 1 & 2
\end{array}\right]
$$

21. (a) If $A\left[\begin{array}{ccccc}0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & & 0 & 0 \\ 0 & 1 & & 0 & 0 \\ 1 & 0 & & 0 & 0\end{array}\right]$ is an $n x n$ matrix, show that $\operatorname{det} \mathrm{A}=(-1)^{\alpha}$ where $\alpha=\mathrm{n}(\mathrm{n}-1) / 2$.
(b) Using Cramer's rule find the solution of

$$
\begin{array}{r}
2 x-y+3 z=9 \\
x+y+z=6 \\
x-y+z=2
\end{array}
$$

22. (a) If $\mathrm{A}=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$ show that $|A|=\left|A_{11}\right|\left|A_{22}\right|$ if $A_{12}=\mathbf{0}$.

Also, show that, in general $|A|=\left|A_{11}\right|\left|A_{22}-A_{21} A_{11}^{-1} A_{12}\right|$.
(b) Determine the characteristic roots of the matrix

$$
\left[\begin{array}{rrr}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right] .
$$

